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14 ABSTRACT: Radix aconiti lateralis praeparata (Baifupian) has received great atten-
15 tion because of its excellent therapeutic effects as well as the associated adverse drug
16 reactions. According to the traditional Chinese medicine (TCM) principle, Baifupian
17 should only be used in patients with TCM “kidney-yang” deficiency pattern, a clinical
18 state that can be mimicked by hydrocortisone induction in rats. This study aimed to
19 decipher the differential toxic responses of Baifupian in healthy and hydrocortisone-
20 pretreated rats based on serum metabolic profiles. Drug-treated rats received Baifupian
21 intragastrically at the dose of 1.28 g/kg/day for 15 days. Serum metabolic profiles were
22 obtained by using the LC-Q-TOF-MS technique. Our results show that Baifupian could
23 induce severe toxicity in the heart, liver, and kidneys of healthy rats. These drug-induced
24 toxic reactions were largely alleviated in hydrocortisone-pretreated animals. Changes of
25 metabolic profiles in drug-treated healthy and hydrocortisone-pretreated rats were
26 demonstrated, involving oxidative phosphorylation, amino acid and lipid metabolism as
27 characterized by altered phosphate, betaine, and phosphatidyl choline. These metabolic alterations could be responsible at least in part
28 for the differential toxic responses of Baifupian under various health conditions. This study provides a new paradigm for better
29 understanding of the risks and limitations when using potentially toxic herbs in clinical applications.

30 KEYWORDS: Baifupian (Radix aconiti lateralis praeparata), hydrocortisone pretreatment, TCM “kidney-yang” deficiency pattern,
31 toxic responses, metabolic profiles

32 ■ INTRODUCTION

33 Use of herbal medicines has currently become more common
34 worldwide not only due to their proven clinical efficacy and
35 general nontoxic nature but also because of the comparatively
36 good tonifying property in the human body and low cost when
37 compared with conventional drugs.1,2 However, there had been
38 occasionally a few reports on the adverse reactions associated
39 with herbal consumption.3,4 Radix aconiti lateralis praeparata
40 (Zhi-Fuzi) has been extensively used in various traditional Chinese
41 medicine (TCM) decoctions based on its superb therapeutic
42 value. Zhi-Fuzi is the processed product of the daughter or
43 lateral roots of Aconitum carmichaelii Debx. (Figure 1A) that
44 possesses beneficial effects in the treatment of various diseases
45 such as rheumatic fever, painful joints, etc.5 It must be emphasized
46 that only processed Fuzi is allowed to be taken orally.6 On the
47 basis of the processing methods, there are three forms of commonly

48used Zhi-Fuzi: salted daughter root (Yanfuzi, Figure 1B), black
49slices (Heishunpian, Figure 1C), and white slices (Baifupian,
50Figure 1D). Among these, Baifupian has been most commonly
51used in clinics and was therefore tested in the present study.
52Although traditional processing procedures can largely reduce
53the toxic effects of herbal drugs,5,6 there are still clinical cases of
54Zhi-Fuzi poisoning being reported in China and other parts of
55the world.7,8 Despite the known toxicity of the herbs, lack of
56knowledge on the underlying toxicological mechanisms remains
57a major obstacle in the rational clinical applications of herbal
58medicines.9,10

59According to the principle of TCM, a herb should only
60be used in patients with specific TCM pattern based on their
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61 differential body characteristics and conditions.11 Baifupian is
62 commonly used to treat patients with TCM “kidney-yang” defi-
63 ciency pattern, characterized by the intolerance of cold temper-
64 ature, faint respiration, icy extremities, diarrhea with undigested
65 food, weak pulse, etc.12−15 We hypothesize that the toxic reactions
66 of Baifupian could be different in healthy subjects when com-
67 pared to those being observed in individuals having the TCM
68 kidney-yang deficiency pattern. Previous studies indicated that
69 the TCM kidney-yang deficiency pattern is mainly characterized
70 by the functional disorders in the hypothalamic-pituitary axis
71 (involving the adrenals, thyroid, and gonads). Hydrocortisone
72 can be used to induce a pathophysiological condition in experi-
73 mental animals that mimics the TCM kidney-yang deficiency.16,17

74 In this study, the TCM kidney-yang deficiency animal model was
75 established by injecting a high dose of hydrocortisone in rats.18

76 In the elucidation of the potential toxicological mechanisms
77 of Baifupian in rats, use of conventional research techniques
78 such as histological and biochemical analyses may have certain
79 disadvantages because: [1] multiple targets might be involved
80 in its general toxic reactions;19 [2] the herb contains multiple
81 chemical components, such as aconitine (Supporting Information,
82 Figure 1A), mesaconitine (Supporting Information, Figure 1B),
83 and hypaconitine (Supporting Information, Figure 1C);20 [3]
84 there are biological variations in the absorption, distribution,
85 metabolism, and excretion (ADME) of Baifupian;21 and [4] there
86 is an existing polymorphism of drug metabolism enzymes.22

87 Alternatively, the metabolic profiling strategy enables us to
88 identify the varying metabolites and related metabolic pathways
89 in the complex regulatory network by monitoring many endo-
90 genous low-molecular-weight metabolites using liquid chroma-
91 tography/mass spectrometry (LC−MS), followed by a combina-
92 tion of multivariate statistical techniques and pattern recognition
93 techniques, such as principal component analysis (PCA) and
94 partial least-squares discriminant analysis (PLS-DA).23−25 Meta-
95 bolomics has brought enormous opportunities for improved
96 detection of toxicity and biomarker discovery.26 In particular,
97 highly sensitive and specific biomarkers in biological fluids
98 (serum, urine, and so on) are very useful for a comprehensive
99 study of the efficacy and/or toxicity of raw and processed
100 herbs.27 In the present study, we compared the toxic reactions
101 of Baifupian in healthy and hydrocortisone-pretreated rats and
102 aimed to investigate their differential metabolic profiles. This
103 metabolomic approach by using the liquid chromatography
104 quadruple time-of-flight mass spectrometry (LC-Q-TOF-MS)
105 technique could help us unveil the mechanism of adverse

106responses of Baifupian under different physiological states and
107facilitate a safer drug administration rationale in clinical practice.

108■ MATERIALS AND METHODS

109Chemicals and Reagents

110Hydrocortisone was purchased from Tianjin Biochemistry Pharma-
111ceutical Company (Tianjin, China). LC−MS grade acetonitrile was
112purchased from Honeywell Burdick and Jackson (MI, U.S.A).
113Mass spectroscopic grade formic acid was purchased from Fluka
114(Buchs, Switzerland). Formic acid (spectroscopic grade), leucine
115enkephalin (spectroscopic grade), and all chemical standards
116were purchased from Sigma-Aldrich (MO, U.S.A) unless specified
117otherwise.
118Preparation of the Ethanol Extract of Baifupian

119Baifupian (Cat no. 081117) was purchased from Yanjing Drug
120Store (Beijing, China) and authenticated by a specialist in
121pharmacognosy. Powdered Baifupian (50 g) was extracted with
12275% ethanol (600 mL for 3 times) under thermal reflux for 1.5 h.
123After filtration, the ethanol extract was concentrated under
124reduced pressure. The resulting residue was dissolved in 0.5%
125sodium carboxyl methyl cellulose to give an extract with the
126concentration of 2 g/mL (expressed as the weight of raw
127materials). We had performed a quality control test on the Baifupian
128ethanol extract using high-performance liquid chromatography
129(HPLC) and AAS-ICP and found no trace of heavy metals,
130organic solvents, or other contaminants.
131Animal Model

132A total of 48 male Sprague−Dawley (SD) rats (230 ± 20 g,
133license no. SCXK 2009−004) were obtained from the Experi-
134mental Animal Center of Beijing Capital University of Medical
135Sciences (China). They were reared under standard laboratory
136conditions. The TCM kidney-yang deficiency condition was
137induced by intraperitoneal (ip) injection of hydrocortisone at a
138dose of 10 mg/kg of body weight once daily for 15 days.18 The
139use of this high dose of hydrocortisone intervention has been
140proven to put animals into a state of “hyperfunction”, facilitating a
141series of metabolic changes such as activated hypothalamic mono-
142amine transmitters and accelerated energy metabolism. The resulting
143“overconsumption” of the energetic and immune systems of the
144animals could lead to a state of “exhaustion” as evidenced by
145the signs of fatigue, weight loss, and reduced activity. These patho-
146physiologic conditions mimic the state of the TCM kidney-yang
147deficiency syndromes, which make the hydrocortisone induction
148animal model a widely accepted method.12−14 Experimental groups
149were established as follows: [C] healthy control rats, [CB] healthy
150rats with administration of Baifupian, [M] hydrocortisone-pretreated
151rats, and [MB] hydrocortisone-pretreated rats with administra-
152tion of Baifupian. All animal experiments were performed under
153the Prevention of Cruelty to Animals Act (1986) of China and
154the NIH Guidelines for Care and Use of Laboratory Animals
155(U.S.A) and had also obtained approval by the Animal Ethics
156Committee of the China Academy of Chinese Medical Sciences
157under the project “TCM disease syndrome classification research”
158(date of approval: June 18, 2010).
159Baifupian Administration and Sample
160Collection/Preparation

161Rats in the CB and MB treatment groups were administrated
162orally by gavage with Baifupian extract at the dose of 1.28 g/kg
163of body weight once daily for 15 days. The dosage being used
164in mice is equivalent to the clinically relevant human adult dose
165based on an established formula for human−mice drug conversion.28

Figure 1. Pictures of the plant and different forms of Zhi-Fuzi for
decoction. (A) plant of Aconitum carmichaelii Debx. (B) Salted
daughter root (Yanfuzi). (C) Black slices (Heishunpian). (D) White
slices (Baifupian).
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166 Rats in the C and M groups received an equal volume of the
167 vehicle orally. Whole blood was collected from the abdominal
168 vein of the rats on day 15 and centrifuged at 3500g for 15 min
169 after standing for two hours at 4 °C. The serum was then
170 transferred into new tubes and stored at −80 °C for further
171 analysis. A portion of the collected serum was used for routine
172 laboratory analysis of urea nitrogen (BUN), creatinine (CRE),
173 aspartate aminotransferase (AST), alanine aminotransferase (ALT),
174 creatine kinase (CK), and lactate dehydrogenase (LDH) according
175 to the manufacturer’s instructions of respective commercial test
176 kits. Another portion of 100 μL of serum was added to 200 μL
177 of acetonitrile, and the mixture was vortexed for 30 s. After
178 centrifugation at 9560g for 10 min at 4 °C, the supernatant was
179 stored at −80 °C for LC−MS analysis. All experimental rats
180 were sacrificed following blood collection. Fresh cardiac,
181 hepatic, and renal tissues were obtained and fixed in 10%
182 neutral buffered formaldehyde at 4 °C for paraffin embedment.
183 Organ samples (4 μm) were sectioned and stained with H&E.

184 LC-Q-TOF-MS Analysis

185 The use of high and ultrahigh resolution mass analyzers (e.g.,
186 time-of-flight, TOF) is capable of obtaining accurate mass mea-
187 surements for the determination of elemental compositions of
188 metabolites and to carry out tentative identification based on
189 metabolites databases (such as the KEGG Pathway Database).
190 Combining this technique with conventional MS/MS will pro-
191 vide useful additional structural information for the identifi-
192 cation of metabolites. The rapid, sensitive performance and
193 versatility of LC-Q-TOF-MS accelerates drug discovery and
194 development,29 including the screening and active mechanism
195 research of herbal drugs.30

196 In this study, LC-Q-TOF-MS analysis was performed by
197 using an Agilent-1200 LC system coupled with an electrospray
198 ionization (ESI) source (Agilent Technologies, Palo Alto, CA,
199 USA) and an Agilent-6520 Q-TOF mass spectrometry. Separa-
200 tion of all samples was performed on an Eclipse plus C18
201 column (1.8 μm, 3.6 mm × 100 mm, Agilent) with a column
202 temperature set to 45 °C. The flow rate was 0.25 mL/min, and
203 the mobile phase consisted of ultrapure water with 0.1% formic
204 acid and acetonitrile. The following gradient program was used:
205 2% acetonitrile for 0−1.5 min; 2−100% acetonitrile for 1.5−13 min;
206 washed with 100% acetonitrile for 13−16 min; re-equilibration step
207 for 5 min. The sample injection volume was 5 μL.
208 Mass detection was operated in both positive and negative
209 ion modes with the following setting: drying gas (N2) flow rate,
210 8 L/min; gas temperature, 330 °C; pressure of nebulizer gas,
211 35 psig; Vcap, 4000 V; fragmentor, 160 V; skimmer, 65 V; scan
212 range, m/z 80−1000. All analyses were acquired using the
213 instrument mass spray to ensure accuracy and reproducibility.
214 Leucine enkephalin was used as the instrument reference mass
215 (m/z 556.2771) at a concentration of 50 fmol/μL with the flow
216 rate 40 μL/min. The MS/MS analysis was acquired in targeted
217 MS/MS mode with collision energy from 10 to 40 V.

218 Sequence Analysis

219 The pooled QC sample was analyzed at the beginning, the end,
220 and randomly through the analytical run to monitor the
221 stability of sequence analysis. The typical batch sequence of
222 serum samples consisted of the consecutive analysis of 1 QC
223 serum sample (at the beginning of the study), followed by 6
224 unknown serum samples and 1 QC serum sample, before run-
225 ning another 6 unknown serum samples, etc. Meanwhile, samples
226 were analyzed in a random order for a normal good practice.
227 An identical sequence was repeated to complete the total set of

228injections (n = 29, including QCs) analyzed in less than 1 day
229per mode.31,32

230Data Processing and Statistical Analysis

231The LC−MS raw data were exported by Agilent Mass Hunter
232Qualitative Analysis Software (Agilent Technologies, Palo Alto,
233CA, USA). The data of each sample were normalized to the
234total area to correct for the MS response shift between injec-
235tions due to any possible intra- and interday variations. The
236sum of the ion peak areas within each sample was normalized to
23710 000. Partial least-squares discriminant analysis (PLS-DA)
238and orthogonal partial least-squares (OPLS) were used for
239metabolite profile analysis. Multivariate analysis was performed
240by the SIMCA-P version 11 software (Umetrics AB, Umea,̊
241Sweden). The data obtained show a normal distribution. In all
242cases, two-way ANOVA, the least significant difference (LSD)
243test, and the independent sample t-test were used for com-
244parison between multiple groups and the two groups, respectively.
245P < 0.05 was considered as statistically significant.

246IPA Analysis

247Ingenuity pathway analysis (IPA, www.ingenuity.com) was per-
248formed based on database sources including KEGG (http://
249www.genome.jp/kegg) and METLIN (http://metlin.scripps.
250edu) to identify the affected metabolic pathways.

251■ RESULTS

252Main Constituents of the Baifupian Extract

253HPLC analysis of the ethanol extract of Baifupian indicates that
254the three major constituents are aconitine (0.0169 mg/g),
255mesaconitine (0.5056 mg/g), and hypaconitine (0.0253 mg/g),
256respectively (Supporting Information, Figure 2). The Baifupian
257herbal extract also includes a collection of alkaloids that share a
258common C19-norditerpenoid skeleton, which are responsible
259for both its therapeutic and toxic properties.33

260Identification of Biochemical and Histopathological
261Changes

262The serum levels of CK (representing the severity of myocardial
263injury), ALT (representing hepatic damage), as well as BUN
264and CRE (representing the severity of renal damage) were all
265significantly elevated in healthy rats following Baifupian treat-
266ments (CB vs C). In contrast, there was generally no significant
267difference being detected between levels of these pathological
268biomarkers in complementary groups of hydrocortisone-
269pretreated animals (MB vs M). In the Baifupian-treated rats,
270all the above detrimental biochemical changes were ameliorated
271significantly when hydrocortisone was pretreated (MB vsCB),
272with a drastic drop of CK and AST levels (Table 1). The histo-
273pathological changes of the heart, liver, and kidneys were further
274examined in rats. Among these, severe morphological damages
275were shown in the heart (Figure 2) with inflammatory infiltration,
276edema, and rupture of the cardiomyocytes being observed in
277Baifupian-treated (CB) rats (Figure 2B). On the other hand,
278the histopathological damages in MB rats (with hydrocortisone
279pretreatment) were relatively mild (Figure 2D). These results
280demonstrate that Baifupian extract would induce more severe
281adverse reactions manifested as internal organ injury in healthy
282rats when compared to those in animals acquired with the
283TCM kidney-yang deficiency pattern.
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284 Assessment of the Repeatability and Stability of the
285 LC-Q-TOF-MS Method

286 Extracts from six aliquots of a random blood sample were
287 continuously injected to evaluate the repeatability. Five common
288 extracted ion chromatograms (EICs) shared by these injections were
289 selected according to their different chemical polarities and m/z
290 values. The relative standard derivations (RSDs) of these peaks were
291 4.34−14.21% for peak areas and 0.03−0.99% for retention times.
292 The LC−MS system stability for the large-scale sample analysis
293 was demonstrated by the test of pooled QC samples. The principal
294 components analysis (PCA) result shows the QC samples are tight
295 clustered. Moreover, peak areas, retention times, and mass
296 accuracies of five selected EICs in five QC samples also showed
297 good system stability. RSDs of the five peaks were 5.14−13.89% for
298 peak areas, 0.03−1.04% for retention times, and 0.13 × 10−04%−
299 0.88 × 10−04% for mass accuracies. The result indicated the large-
300 scale sample analysis had hardly any effect on the reliability of data.

301 Examination of MS Spectra and Identification of the
302 Differential Metabolites

303 Typical total ion current (TIC) chromatograms of serum samples
304 were obtained from both healthy and hydrocortisone-pretreated

305rats, whether or not treated with Baifupian (Supporting Information,
306Figure 3). The top 200 significant ions were selected for metabolite
307identification. A total of 42 metabolites were identified from the
308serum samples, while 18 metabolomic metabolites were found
309to be most significant among the groups (Table 2). On the
310basis of the metabolic changes in M and MB rats (rats with
311hydrocortisone pretreatment) as revealed by TIC chromatog-
312raphy, we adopted the multiple pattern recognition methods
313PLS-DA (Figure 3) and OPLS (Figure 4). These approaches
314facilitate classification of the metabolic phenotypes and enable
315us to further identify the differential metabolites. Score plots
316from PLS-DA have shown obvious separation between the C
317and M (effect of hydrocortisone pretreatment), C and CB, as
318well as M and MB (effects of Baifupian under healthy or TCM
319kidney-yang deficient condition) groups of rats as illustrated in
320Figure 3. The separation of the groups could be achieved with
321the model parameters R2Y = 0.958 and Q2 = 0.665. Q2Y
322obtained from cross-validation procedure represents the pre-
323dictive accuracy of the model, and R2Y shows how well the
324model fits to the data. These parameters indicate that the two
325models can accurately describe the data. Moreover, the results
326from permutation tests have shown that the two models are not

Table 1. Effects on Biochemical Parameters in the Serum of Healthy and Hydrocortisone-Pretreated Rats with or without
Administration of Baifupian (mean ± SD, n = 12)a,b,c,d

group CK (U/L) LDH (U/L) AST (U/L) ALT (U/L) BUN (mmol/L) CRE (mmol/L)

C 202.74 ± 35.80 197.14 ± 49.50 212.38 ± 32.04 57.63 ± 6.91 5.26 ± 1.43 41.75 ± 1.39
CB 302.10 ± 81.29### 242.55 ± 63.02 248.25 ± 61.78 74.75 ± 14.65## 6.34 ± 0.98# 46.63 ± 4.50##

M 236.14 ± 45.20 133.21 ± 74.81 183.38 ± 37.24 56.13 ± 8.11 6.63 ± 0.95 44.25 ± 4.67
MB 214.41 ± 38.71* 226.02 ± 97.84† 167.71 ± 38.46** 67.29 ± 17.26 6.34 ± 1.61 43.14 ± 3.80

aNote: All serum samples were collected from the rats at the end of the experiments. bCB vs C. #p < 0.05, ##p < 0.01, ###p < 0.001. cMB vs CB:
*p < 0.05, **p < 0.01. dMB vs M: †p < 0.05.

Figure 2. Heart histopathology, H & E staining, 200×. (A) Healthy control [C]: myocardial fibers in longitudinal section and normal the central
nuclei and the syncytial arrangement of the fibers. (B) Healthy control exposed to Baifupian [CB]: myocardial fibers with losing cross striations and
the nuclei not clearly visible, inflammatory infiltration. (C) Hydrocortisone-induced model control [M]. (D) Model control exposed to Baifupian
[MB]: the histopathological changes were milder than in part B.
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327 overfitting but rather reflect the metabolic changes incurred
328 (intercepts: R2 = 0.878, Q2 = −0.214).
329 To fully differentiate between the metabolites in the M
330 (hydrocortisone-pretreated) and C (healthy control) groups,
331 OPLS was conducted. OPLS is an efficient method for identi-
332 fying ions that contribute to the clustering of samples. It also
333 helps to eliminate noncorrelated variations contained within
334 spectra. As shown in Figure 4A, there was a distinct clustering
335 between M and C groups. Q2Y and R2Y in the OPLS models
336 indicate that the class prediction ability of all models was high
337 and that there was an authentic difference between the two
338 groups. The corresponding S-plot (Figure 4B) in turn shows
339 the contribution of different variables for the differentiation
340 between M and C groups. Each triangle in the S-plot represents
341 an ion. Ions far away from the origin are potential biomarkers.
342 Among the 13 identified metabolites in the hydrocortisone-
343 pretreated (M) rats, 9 were up-regulated, while the other 4
344 were down-regulated (Table 2). Alternatively, if Baifupian was
345 treated [MB rats], 5 of the originally up-regulated metabolites
346 (as in the M group) now became down-regulated. In addition,
347 6 identified metabolites were perturbed in healthy [C] rats after
348 Baifupian administration. Among the 6 metabolites being modulated
349 by Baifupian, only betaine was altered in both healthy [CB] and
350 hydrocortisone-pretreated [MB] rats, of which there was an up-
351 regulation in the former group and a down-regulation in the
352 latter group.

353 Metabolic Pathway Analysis with IPA

354 To further understand the correlation between the candidate
355 biomarkers, bioinformatics analyses were performed using
356 the IPA software, leading to the identification of biological
357 association networks. As shown in Figure 5, the network was
358 built based on the 13 differentiated metabolites between the

359hydrocortisone-pretreated [M] and healthy control [C] rats. The
360established network function in hydrocortisone-pretreated rats in-
361cludes energy production, amino acid metabolism, lipid meta-
362bolism, molecular transport, organismal injury, and abnormalities.

Table 2. Identified Differential Metabolites in the Serum of Healthy and Hydrocortisone-Pretreated Rats with or without
Administration of Baifupiana

n tR (min)
extract
mass formula ID compound M vs C MB vs M CB vs C pathway

1 2.2232 97.9769 H3O4P C00009 phosphate ↑ ↓ oxidative phosphorylation
2 2.1455 117.0790 C5H11NO2 C00719 betaine ↑ ↓ ↑ glycine, serine, and threonine

metabolism
3 6.7978 136.0524 C8H8O2 C03765 4-hydroxyphenyl

acetaldehyde
↑ ↓ tyrosine metabolism

4 5.3171 191.0582 C10H9NO3 C05635 5-hydroxyindol-3-acetic acid ↑ ↓ tryptophan metabolism
5 6.4323 219.1107 C9H17NO5 C00864 D-pantothenic acid ↑ pantothenate and CoA

biosynthesis
6 1.6536 226.1066 C9H14N4O3 C00386 carnosine ↑ alanine and aspartate

metabolism
7 1.7229 240.1222 C10H16N4O3 C00884 homocarnosine ↑ arginine and proline

metabolism
8 7.2862 314.0427 C16H10O7 C04376 5′-phosphoribosyl-N-

formylglycinamide
↑ ↓ purine metabolism

9 14.8504 382.2719 C22H38O5 C04741 prostaglandin E1 ↑ arachidonic acid metabolism
10 12.8678 103.0997 C5H13NO C00114 choline ↓ phospholipid metabolism
11 8.0597 139.9875 C2H5O5P C00227 acetyl phosphate ↓ taurine and hypotaurine

metabolism
12 14.7515 304.2412 C20H32O2 C00219 arachidonic acid ↓ arachidonic acid metabolism
13 10.6948 427.2934 C23H41NO6 C00639 PGF2α ↓ arachidonic acid metabolism
14 2.7716 246.0058 C5H12O7P2 C00235 dimethylallyl diphosphate ↓ biosynthesis of steroids
15 15.2393 483.9685 C9H15N2O15P3 C00075 UTP ↑ pyrimidine metabolism
16 7.1714 753.5309 C42H76NO8P C00157 phosphatidyl choline ↓ glycerolipid metabolism
17 8.9805 424.1693 C16H28N2O11 C01674 N,N-diacetylchitobiose ↑ aminosugars metabolism
18 7.2601 270.0119 C7H14N2O4Se C05699 selenocystathionine ↑ selenocysteine metabolism

aNote: ↑ shows up-regulated metabolite; ↓ shows down-regulated metabolite.

Figure 3. Results of multiple pattern recognition of serum metabolites
impacted by different groups with or without exposure to Baifupian.
PLS-DA score plot (n = 6, R2Y = 0.983, R2X = 0.302, Q2 = 0.744).
(blue ⧫) Hydrocortisone-pretreated group. (green ▲) Healthy control
group. (black ■) Healthy rats exposed to Baifupian. (red ●)
Hydrocortisone-pretreated rats exposed to Baifupian.
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363 Among these, the five top canonical pathways include glycine,
364 serine, and threonine metabolism, tryptophan metabolism, taurine
365 and hypotaurine metabolism, oxidative phosphorylation, as well as
366 pantothenate and CoA biosynthesis.
367 By using a similar method, we have also mapped the meta-
368 bolic network by means of five identified metabolites in MB
369 rats when compared to those in rats without Baifupian treat-
370 ment [M] (Figure 6). The established network functions of
371 these metabolite changes following hydrocortisone induction
372 include energy production, amino acid metabolism, cardiovas-
373 cular disease, molecular transport, and free radical scavenging,
374 while the five top canonical pathways are the protein ubiqui-
375 tination pathway, oxidative phosphorylation, glycine, serine, and

376threonine metabolism, tryptophan metabolism, as well as purine
377metabolism, respectively. In the CB group of rats (when com-
378pared with healthy control rats in the C group), the established
379network was intervened with both up-regulated (betaine,
380uridine triphosphate (UTP), N,N-diacetylchitobiose, and seleno-
381cystathionine) and down-regulated (dimethylallyl diphosphate and
382phosphatidyl choline) metabolites (Figure 7). The established
383network functions include amino acid metabolism, lipid meta-
384bolism, small molecule biochemistry, and drug metabolism,
385whereas the top five canonical pathways are glycine, serine, and
386threonine metabolism, aminosugars metabolism, pyrimidine
387metabolism, purine metabolism, and biosynthesis of steroids
388(Figure 8).

Figure 4. Results of multiple pattern recognition of serum biomarkers between the healthy control and hydrocortisone-pretreated group. (A) OPLS
score plot (n = 6, R2Y = 0.999, R2X = 0.496, Q2 = 0.967) of (left ▲) healthy control and (right ▲) hydrocortisone-pretreated group. (B) OPLS S-
plot. Each triangle in the S-plot represents an ion. Ions far away from the origin were responsible for potential biomarkers.

Figure 5. Hydrocortisone-perturbed molecular network. The network was gained by overlapping hydrocortisone-pretreated group’s data to healthy
group’s data. Metabolites are represented as nodes, and the biological relationship between two nodes is represented as a line. Note that the colored
symbols represent metabolites that occur in the tested data, while the transparent entries are molecules from the Ingenuity Knowledge Database. Red
symbols represent up-regulated metabolites; green symbols represent down-regulated metabolites. Solid lines between molecules indicate a direct
physical relationship between molecules; dotted lines indicate indirect functional relationships.
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389 ■ DISCUSSION

390 We are the first group to report that Baifupian administration
391 induced differential toxic reactions in healthy and hydro-
392 cortisone-pretreated rats (with the TCM kidney-yang deficiency
393 condition). The altered energy metabolism, amino acid meta-
394 bolism, and lipid metabolism should be at least partly respon-
395 sible for the systemic toxicity being brought forth by the herbal
396 drug. This in fact confirms the use of Baifupian only in subjects
397 with a particular body condition.
398 Zhi-Fuzi is commonly prescribed by TCM practitioners. Its
399 clinical use was first recorded around 200 B.C. in Shennong’s
400 Materia Medica (“Sheng Nong Ben Cao Jing” in Chinese), one of
401 the earliest Chinese materia medica classics. Contemporary
402 published works have shown that Zhi-Fuzi is good at preventing

403congestive heart failure and portal hypertension.34,35 Never-
404theless, it has been suggested that the alkaloids in Fuzi are
405responsible for the toxicity in the heart, liver, and other vital
406organs.36−41 In the present study, the differential toxic responses of
407Baifupian (most commonly used Zhi-Fuzi) in healthy and
408hydrocortisone-pretreated rats were investigated. The steroid
409hormone hydrocortisone plays a complex role in regulating
410diversified body functions. An unique pathophysiologic state
411can be established by injecting a high dose of hydrocortisone
412into rats, which consequently show signs of exhaustion such as
413weight loss, tendency to cluster with dropped appetite, reduced
414motor activity and response to external stimuli, cold limbs and
415back, painful waists and knees, tinnitus, impairment of hearing,
416and looseness of teeth.12−15 All these body states resemble

Figure 6. Molecular network of hydrocortisone-pretreated rats exposed to Baifupian. The network was overlapped by hydrocortisone-pretreated rats
with or without exposure to Baifupian. Metabolites are represented as nodes, and the biological relationship between two nodes is represented as a
line. Note that the colored symbols represent metabolites that occur in our data, while the transparent entries are molecules from the Ingenuity
Knowledge Database. Green symbols represent down-regulated metabolites. Solid lines between molecules indicate a direct physical relationship
between molecules, and dotted lines indicate indirect functional relationships.

Figure 7. Molecular network of healthy rats exposed to Baifupian. The network was overlapped by healthy rats with or without exposure to
Baifupian. Metabolites are represented as nodes, and the biological relationship between two nodes is represented as a line. Note that the colored
symbols represent metabolites that occur in our data, while the transparent entries are molecules from the Ingenuity Knowledge Database. Red
symbols represent up-regulated metabolites; green symbols represent down-regulated metabolites. Solid lines between molecules indicate a direct
physical relationship between molecules, and dotted lines indicate indirect functional relationships.
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417 TCM kidney-yang deficiency in humans.16,17 Our histopatho-
418 logical and biochemical findings both indicate that Baifupian
419 could lead to severe cardiac, hepatic, and renal damages in healthy
420 control rats but exerted a comparatively mild detrimental effect
421 in hydrocortisone-pretreated rats (with the TCM kidney-yang
422 deficiency pattern). To further unveil the precise mechanisms
423 of the differential toxic responses to Baifupian in healthy and
424 hydrocortisone-pretreated rats, a metabolomics approach was
425 employed to determine the metabolic profiles, whereas the meta-
426 bolic networks and pathways involved had been analyzed.
427 Traditionally, Baifupian should only be used for treatment of
428 patients with the TCM kidney-yang deficiency pattern.16,17 Our
429 findings using the hydrocortisone rat model have indicated that
430 energy production would be the first most important network
431 function being perturbed, such as the enhancement of oxidative
432 phosphorylation by up-regulating phosphate. Oxidative phos-
433 phorylation is a metabolic pathway that involves oxidation of
434 nutrients to produce adenosine triphosphate (ATP), a pervasive
435 pathway that efficiently generates energy.42 In addition, the up-
436 regulated D-pantothenic acid as shown in our study further
437 accelerates energy metabolism. Pantothenic acid participates in
438 a wide array of key biological roles, which is essential to all
439 forms of life.43 It is particularly important in the synthesis of
440 coenzyme A (CoA), an acyl group carrier that forms acetyl-
441 CoA and other related compounds.44,45 Other than oxidative
442 phosphorylation and CoA biosynthesis, hydrocortisone-pretreated
443 rats were also characterized by alteration of amino acid meta-
444 bolism, with up-regulated glycine, serine, and threonine metabolism,
445 tyrosine metabolism, tryptophan metabolism, alanine and aspartate

446metabolism, arginine, proline metabolism, purine metabolism,
447as well as down-regulated taurine and hypotaurine metabolism.
448These results are consistent with previous studies on the TCM
449kidney-yang deficiency pattern.12,16 Besides, phospholipid and
450arachidonic acid metabolism was also perturbed in hydro-
451cortisone-pretreated rats with decreased levels of choline and
452prostaglandin F2alpha (PGF2α). Choline, the basic constituent
453of lecithin being found in animal organs, is essential as a methyl
454donor in phospholipid metabolism; insufficient choline can cause
455bone abnormalities.46 Through arachidonic acid conversion to
456active components such as PGF2α, the repair and growth of
457skeletal muscle tissue will be facilitated;47 down-regulation of
458those active components may cause weight loss and body
459fatigue.48,49 To summerize, the accelerated energy metabolism,
460down-regulated phospholipid metabolism, and perturbed
461amino acid metabolism all reflect the metabolic characteristics
462in the hydrocortisone-pretreated rats, a representation of the
463TCM kidney-yang deficiency pattern.
464Most of the up-regulated metabolites in hydrocortisone-
465pretreated rats became down-regulated after Baifupian treatment,
466including phosphate, betaine, 4-hydroxyphenyl acetaldehyde, 5-
467hydroxyindol-3-acetic acid, and 5′-phosphoribosyl-N-formylgly-
468cinamide, which participate mainly in energy metabolism and
469amino acid metabolism. We have analyzed the metabolites and
470corresponding pathways that could lead to possible toxic response
471of Baifupian in hydrocortisone-pretreated rats. Disruption of
472oxidative phosphorylation attributed to down-regulated phos-
473phate is linked to energy deficiency in the ischemic heart50 and
474also influences calcium-activated cascades that result in arrhythmia.51

Figure 8. Different metabolites and corresponding pathways in hydrocortisone-pretreated rats or healthy rats with or without Baifupian administration. The
green text box represents downregulated metabolic pathways, and the red text box represents upregulated metabolic pathways. “↑” and “↓” represent
that the metabolite is up- or down-regulated. In hydrocortisone-pretreated rats with Baifupian administration [MB], oxidative phosphorylation,
glycine, serine, and threonine metabolism, tyrosine metabolism, tryptophan metabolism, and purine metabolism were down-regulated when
compared with the corresponding group without drug treatment [M]. In healthy rats with Baifupian administration [CB], glycine, serine, and
threonine metabolism, pyrimidine metabolism, aminosugars metabolism, and selenocysteine metabolism were up-regulated; however, biosynthesis of
steroids and glycerolipid metabolism were down-regulated, all being compared with the corresponding group without drug treatment [C].
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475 Down-regulated 5-hydroxyindol-3-acetic acid is involved in
476 tryptophan metabolism. An increased rate of tryptophan degra-
477 dation and thereby lowered tryptophan level are associated with
478 coronary heart disease,52 whereas tryptophan depletion eventually
479 affects pacemaker activity and thus heart rate stability.53 Besides,
480 purine metabolism that can be regulated by 5′-phosphoribosyl-
481 N-formylglycinamide plays an important role in heart failure.54

482 Cardiac ischemia-reperfusion could also produce remarkable
483 reduction in the release of purine catabolites.55 Purine meta-
484 bolism in liver cells is also important in maintaining normal
485 liver functions.56 Despite this, glycine, serine, and threonine
486 metabolism could be perturbed by betaine. A previous study
487 indicated that the kinetics of glycine are substantially altered in
488 severe cirrhosis,57 while hepatomas are characterized by enzymic
489 imbalance in serine metabolism58 since a majority of the threonine
490 oxidation occurs in the hepatocytes.59 4-Hydroxyphenyl acetalde-
491 hyde is involved with tyrosine metabolism, of which its increased
492 metabolism could be related to nephrotoxicity,60 since tyrosine in
493 plasma is reduced substantially in chronic renal impairment.61 It is
494 remarkable that prolonged intervention by hydrocortisone is likely
495 to result in a worsened body state in the experimental animals,
496 involving physical changes of the immune system and associated
497 organs as other investigators reported,62 although the duration
498 of our hydrocortisone-induced experiment was too short to demon-
499 strate such changes. However, possible subsequent conditions such
500 as diabetes and other cardiovascular disorders are expected to
501 gradually develop, which can be reflected by the altered meta-
502 bolites and associated pathways. Among these, Baifupian only caused
503 down-regulation of the elevated parameters in the hydrocortisone-
504 pretreated rats (MB vs M), while in healthy rats (CB vs C), most
505 of these metabolites remained unaltered following Baifupian
506 administration. The only concern should be about the up-regulated
507 betaine level after drug treatment in healthy rats, which implicates a
508 possibility that Baifupian may produce toxicity in healthy subjects
509 through interference of glycine, serine, and threonine metabolism,
510 a risk that is less essential in individuals who possess the TCM
511 kidney-yang deficiency pattern.
512 Perturbed metabolites and altered metabolic pathways in healthy
513 individuals after exposure to Baifupian could well explain the
514 toxic responses of the drug being reported in recent years. As
515 discussed earlier, Baifupain will down-regulate betaine levels in
516 healthy rats. Betaine is an essential osmolyte and methyl group
517 donor, and its metabolism links several metabolites that together
518 play an important role in preserving normal cardiac functions.63

519 Elevated plasma betaine promotes up-regulation of multiple
520 macrophage scavenger receptors that are linked to an increased
521 risk of secondary heart failure and acute myocardial infarction.64

522 Besides, betaine might influence liver functions by perturbing glycine,
523 serine, and threonine metabolism (as explained earlier),57−59

524 while it also contributes to the osmoregulation of various renal
525 cells.65 Collectively, these toxic responses of Baifupian in the
526 heart, liver, and kidneys of healthy individuals might be partially
527 caused by the elevated betaine level. Other than betaine,
528 dimethylallyl pyrophosphate was found to be down-regulated
529 by Baifupian in healthy rats. This compound is a novel pain-
530 producing molecule, which can enhance acute inflammation.66

531 Down-regulation of dimethylallyl pyrophosphate in turn
532 suggests an antinociceptive potential of the drug. UTP being
533 up-regulated in Baifupian-administered healthy rats has the role
534 as a body energy provider and substrates activator during
535 metabolic reactions, and an elevated UTP level is commonly
536 observed during myocardial infarction.67 UTP also inhibits
537 ATP-sensitive and voltage-dependent K+ currents while having

538no effect on inwardly rectifying and Ca2+-activated K+ channels.68

539Aconitine in Baifupian could interact with the voltage-dependent
540sodium-ion channels.39 Thus, up-regulated UTP might be in-
541volved in the potential cardiac toxicity being induced by Baifupian
542in healthy subjects. Alternatively, the major constituent of cell
543membranes, phosphatidylcholine, was down-regulated by Baifupian
544in healthy rats. Such down-regulation could contribute to fulminant
545and subacute hepatic failure.69 In fact, cardiac toxicity induced by
546aconite (from other toxic plants such as Aconitum species) has been
547correlated with polyunsaturated fatty acid metabolic disorders,70,71

548and it is of interest to have further investigations on phos-
549phatidylcholine as a potential target of Baifupian’s toxicity. As
550an inhibitor of lysozyme c, N,N-diacetylchitobiose is capable of
551reducing the release of inflammatory mediators.72 The anti-
552inflammatory activity of Aconitum, as shown in a previous study,73

553might be due to an increased N,N-diacetylchitobiose level. Taken
554together, the facilitation of glycine, serine, threonine, and pyrimidine
555metabolism as well as disruption of glycerolipid metabolism by
556Baifupian could be responsible for its toxic responses in healthy
557individuals. However, the beneficial antinociceptive and anti-
558inflammatory properties of the drug due to its alteration of the
559biosynthesis of steroids and aminosugar metabolism could explain
560why Baifupian is still actively used in many TCM formulations.
561Our results demonstrated that Baifupian would induce more
562severe toxic reactions in the heart, liver, and kidneys in healthy
563rats than in hydrocortisone-induced rats. This phenomenon
564supports the TCM theory of “You Gu Wu Yun” (translated as “a
565toxic herb may exhibit maximal therapeutic effects when it is
566prescribed to patients with a complementary TCM pattern”).
567This theory had been established some 2000 years ago and is
568still regarded as one of the most important guidelines in
569contemporary TCM clinical practices when using toxic herbs.
570In fact, this report provides a basis for a better understanding
571and explanation of the You Gu Wu Yun principle in metabolic
572and molecular levels. If we attempt to compare this idea with
573modern pharmacological principles, we could quote the example
574of G-6-PD deficiency and malaria. It has been proposed that there
575is a low correlation between the degree of malarial endemicity and
576the frequency of G-6-PD deficiency.74 This is because the malaria
577parasites are microaerophilic and sensitive to the state of oxidative
578stress, which is the condition of individuals acquired with G-6-PD
579deficiency. This in turn creates a higher degree resistance to
580malaria in certain tropical and southern Asia populations with the
581inherited trait of G-6-PD deficiency.75,76 Indeed, a drug having
582differential toxicities in subjects with distinctive phenotypes
583(e.g., acetylator) is not uncommon in contemporary clinical
584practice.77

585In conclusion, the differential toxic responses observed after
586Baifupian administration in healthy and hydrocortisone-
587induced rats had been verified in the present study. An altered
588metabolic profile involving oxidative phosphorylation, amino
589acid, and lipid metabolism as characterized by altered phosphate,
590betaine, and phosphatidyl choline may be associated with a
591differential toxic response profile. Results from this investigation
592provide a new paradigm for assessing the risks of potentially toxic
593herbs to facilitate their rational and safer clinical applications.
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